

OUR STRATEGIC LEVERS

Empowering a sustainable future by optimizing energy efficiency and reducing environmental impact through innovative thermal solutions

HIGH TECH

SERVER HALL COOLING HEAT REJECTION INTEGRATION LIQUID COOLING **SEMICONDUCTORS**

GREEN TECH

CARBON CAPTURE HYDROGEN RENEWABLE ENERGIES | LNG HVAC **HEAT PUMPS**

REFRIGERATION **FOOD & BEVERAGE TRANSPORTATION** CHEMICALS **HEAVY & LIGHT EQUIPMENT**

A TRULY GLOBAL FOOTPRINT

Interconnected Engineering, Manufacturing and Service as enablers for global customers

Clida

SUCCESS STORIES

Your Success is our Mission

SUCCESS STORY

Kelvion secures \$31.5M flagship order to deliver 250+ MW next-gen for major U.S. data centre expansion

SUCCESS STORY

Kelvion Delivers \$40M+ Scalable Cooling Solution for 200+ MW Phase of Major Al Data Centre in USA

KELVION TO DELIVER HIGH-CAPACITY HEAT REJECTION EQUIPMENT

- ▶ GigaBay configuration with large fans and high-pressure fogging systems
- ▶ Low-maintenance needs, optimised for uptime and long-term performance
- ▶ Water-saving operation compared to conventional wet cooling tower systems
- Significantly less space as conventional dry or hybrid cooling methods as well as less complexity in terms of piping and wiring
- Six CCDU skids − 5 x capacity of 9+ MW each & 1 with a capacity of 4+ MW
- ▶ Providing comprehensive technical guidance and tailoring the solution

KELVION DATA CENTER SOLUTIONS OVERVIEW

WHITESPACE COOLING LIQUID BASED

- ▶ Immersion Cooling
- ▶ Direct to Chip
- ▶ Edge Cooling

WHITESPACE COOLING AIR BASED

- ► CRAC/CRAH
- ► Hot Aisle & Cold Aisle

INTEGRATED SOLUTIONS

- ► CCDU
- ▶ Integrated HX Solutions

HEAT REJECTION & HEAT RECOVERY

- ► Adiabatic Spray/Pad
- ► Hybrid Cooler
- - ► Cooling Tower

WHITE SPACE COOLING

Overview

LOCALIZED VS CENTRALIZED CDU

Liquid Cooling

ADVANTAGES CENTRALIZED CDU

- ► Large thermal inertia
- ➤ Simplicity of installation & control
- ► Greater system resiliency
- ► Reduction of duplication of redundancies
- Reduced maintenance

LOCALIZED LIQUID COOLING (< 3 MW)

CENTRALIZED LIQUID COOLING (> 3 MW)

BRAZED PLATE HEAT EXCHANGERS

- ► Small sizes ideally suited for card level placement
- ► Handling of volume flow make them also a suitable choice for a placement at rack or tank level
- ➤ Various corrugation available to match properties of dielectric fluids

GASKETED PLATE HEAT EXCHANGERS

- ► For higher heat loads and placement on aisle or hall level
- ► Capable of dealing with dielectric fluid viscosity
- ► Various gap sizes
- ► Wide range of materials for plates and gaskets

MODULAR INTEGRATION

- ► Pre-manufactured & assembled modules
 - ► Consistent & Controlled Quality
 - ► Reduction of On-Site Labor Hours
- ► Integrated Services
 - ► Hot Aisle Containment
 - ► Power & Network Modules
 - ► Cooling Infrastructure
 - ► Fire Suppression & Signage
 - ► Audio & Lighting
 - ► Access Doors & Hatches
- ► Robotically Welded Steel Frame

CUSTOMISED CRAH

CUSTOMIZED CRAH UNITS

- ► Applying a range of coil technology to direct cooling server racks
- ► Efficient direct aisle cooling

FAN WALL

- ► Innovative and scalable server room integration
- ▶ Return Air Cooling

DRY COOLING SOLUTIONS

Overview

DRY COOLING RANGE

COOLING CAPACITY PER MODULE

HEAT REJECTION | DRY COOLING

FOOTPRINT	High
PER MW	Low
WATER	High
CONSUMPTION	Low
WATER QUALITY	High
NEEDED	Low
POWER	High
CONSUMPTION	Low
ON SITE ERRECTION	High Site errected
WORK	Low
MAINTENANCE	Site errected High
	Low
EXPECTED	High
LIFETIME	Low
HEIGHT	High
ABOVE GROUND	Low

HVAC SCALE VS UTILITY SCALE

Fins Vs Tubes

COMPACT SYSTEM - HVAC

- ► Copper tube & alu fin
- ► Tube mechanically expanded into plate fin
 - ► All tubes brazed to header and return bends
- ► High thermal efficiency decreases with increasing tube diameter
- ► Set configurations (fin types geometry fixed)
- ► Limitations on manufacturable length (13.2m)
- ► Better for smaller scale applications (< 50MW)

SINGLE TUBE - UTILITY

- ► Steel tube with alu fin
- ► Individual tubes act as "independent" heat exchanger
 - ► Fin wrapped around tube or embedded into tube wall
- ► Headers made of box section instead of round tube
 - ► Tubes Welded or expanded into header
- ► High level of configuration
- ► Manufacturable length = 18m or greater
- ► Better for large scale applications (> 50MW)

HVAC SCALE VS UTILITY SCALE

FAN OVERVIEW

- ► Bearing Lifecyle > 60,000 up to 100,000 Hours (EC Fans typically 30,000-35,000 hours)
- ► Easy access to motor for crane-free maintenance
- ► Low Noise Fan Options
- ► AC Fans with VFD speed control
- ► Options for factory fitted plug and play set-up

MAX FAN DIAMETER (FT)

DESIGN, SELECTION AND LAYOUTS

SELECTION CONSIDERATIONS

- ► Approach temperature 4K to 5K from DB
- ➤ Surface area vs tube side pressure drop 1.5Bar max (typ 0.4 0.9 Bar)
- ► Rows & header passes
- ► Face velocity max 4.2 m/s
- ► Air side pressure drop vs motor power

CHILLER ALIGNMENT

- ► Free cooling vs mixed vs mech mode
- ▶ Compressor duty
- ► High ambients and condensing temperatures
- Reducing condensing temperatures to improve chiller COP

SITE CONSIDERATIONS

- ► Hot air recirculation ambient offsets (Saudi / DC typ), frame heights & spacing
- ► Additional heat sources & prevailing winds
- ► Weight & footprint
- Noise
- Power

KEY BENEFITS AT A GLANCE

- ► High-capacity density when space is restricted
- Meets a growing market need for a lower carbon footprint & quieter operation
- ► Ideally suited for adiabatic spray or pad options

COMPARISON

Flatbed vs. V-Shape

	FLATBED	V-SHAPE		
AVAILABLE AS	Condenser Gascooler Drycooler	Condenser Gascooler Drycooler		
FAN TECHNOLOGY	AC Fan Technology EC Fan Technology	AC Fan Technology EC Fan Technology		
MAX NO° OF FANS	20	22		
ADIABATIC OPTION	•00	•••		

CAPACITY IN RELATION TO FOOTRPINT (EXAMPLE)

U-SHAPE STACKABLE UNIT

KEY BENEFITS AT A GLANCE

- ► High-capacity density
- ► Design with high surface area
- ► Lower energy consumption
- ► Rapid deployment without any major site works
- ► Balanced airflow over the top and bottom coil sets

TWO SIZES AVAILABLE

Transport in several parts with final assembly on site

MEGA-BAY & GIGA-BAY

- ► Integrated mounting frames for no hot air re-circulation
- ► FEA and structural calculation applied to ensure wide ranging standards can be met on request
- Delivered separately, but designed modularly for rapid assembly

WET COOLING SOLUTIONS

WET/HYBRID COOLING SOLUTIONS

COOLING CAPACITY PER MODULE

ABOVE GROUND

HEAT REJECTION | WET COOLING

Criteria Matrix

FOOTPRINT	High state of the	gh
PER MW	Lo	w
WATER	High state of the	gh
CONSUMPTION	Lo	W
WATER QUALITY	High	gh
NEEDED	Lo	w
POWER	High	gh
CONSUMPTION	Lo	w
ON SITE ERRECTION	Hig Site errected.	gh
WORK	Lo	w
MAINTENANCE	Site errected High	gh
	Lo	w
EXPECTED	High	gh
LIFETIME	Lo	w
HEIGHT	High	gh

WET COOLING WITH ADIABATIC SYSTEMS

HVAC Scale

COOLING TECHNOLOGY COMPARISON

ř							
		DRY COOLING	ADIABATIC SPRAY	ADIABATIC PAD	HYBRID	CASCADE	COOLING TOWER
APP	PROACH	4 - 5K to DB	4 - 5K to Inlet Air	4 - 5K to Inlet Air	4K to DB 2K to WB (<wb cooling)<="" dir.="" th="" w=""><th>2K to WB</th><th>2K to WB</th></wb>	2K to WB	2K to WB
	ABATIC ICIENCY	-	Up to 60% (LP) Up to 80% (HP)	Up to 95%	Up to 95%	Up to 100%	Up to 100%
WA	TER QUALITY	-	Potable & Filtered	Grey Water	Grey Water	Poor Water Quality Sea Water	Poor Water Quality Sea Water
WAT	TER NSUMPTION	-	1 (HP) / 2 (LP)	3	4	5	6

WHAT IS ADIABATIC?

Adiabatic cooling is the process of **reducing** temperature through a **change** in air **humidity**

WARM DRY AIR

To **evaporate** water, **energy** in form of **heat** is required. This **evaporation energy** is extracted from the ambient air which **cools** it.

COOL & HUMID AIR

ADIABATIC SPRAY SYSTEM

HVAC Scale

KEY FEATURES

- ► More Free Cooling per year
- ► Smaller Footprint
- ► Less Water Consumption than Adiabatic Pad System
- ▶ 95% Evaporation in the Air
- ► Not on the coil
- ► Reduced fouling
- ► Booster pumps and Actuated Flow Valves
- ➤ 30-years of Expertise with Adiabatic Systems

The evaporating energy of water is used to cool the incoming air.

ADIABATIC PAD SYSTEM

HVAC Scale

KEY FEATURES

- ► More Free Cooling per year
- ► Smaller Footprint
- ► Recirculation Pump
- ► Reduced Water Loss
- ► Easy Install and Removal
- ► Dirt and Debris Screens
- ► Extend Pad Service Life
- ➤ 30-years of Expertise with Adiabatic Systems

The evaporating energy of water is used to cool the incoming air.

HYBRID V-BANK COOLER

HVAC Scale

KEY FEATURES

- ► Automatic switch from dry to wet mode
- ► Superior water distribution system ensures uniform wetting of entire coil
- ► Efficient recirculation system
- ➤ Special coating for fin protection
- ► Perfect balance between water and energy consumption
- ► Auto drain system and advanced water control management

Switch from DRY to WET whenever it is beneficial & optimizing electrical & water consumption

KEY FEATURES

- ► Combining Dry & Wet Cooling
- ► Reducing Energy & Water Consumption
- ▶ Optimised OPEX / CAPEX
- Approach of 2K to Wet Bulb (compared to 4-5K Adiabatic/Hybrid V-Bank)
- ► Up to 100% adiabatic efficiency (compared to 95% Adiabatic/Hybrid V-Bank)
- Suitable for Poor Water Quality / Sea Water
- Customised selection to suit application
 - ► Set water usage preference
 - ► Design Dry Coolers for reduced water
 - ► Align Cooling Towers for peak load
 - ► Process fluid runs in series Dry Cooler to Cooling Tower

CASCADE COOLING SCHEMATIC

Utility Scale

OVERVIEW

- ► Heat Rejection in conjunction with Liquid Cooled Chillers
- Mode of operation (power conserving):
 - ▶ Free cooling Dry
 - ▶ Free cooling wet
 - Mixed mode (cascade + Chiller)
 Wet
 - ► Full mechanical mode (Wet)
- ► Mode of operation (water conserving):
 - ► Free cooling Dry
 - ▶ Mixed mode (Dry + Chiller)
 - ► Full mechanical mode Dry
 - ► Full mechanical mode wet
- Bypass valves for control
- ► The chiller with the lowest possible Temperature range for condenser (2K T approach CT): minimise compressor lift

CASCADE COOLING SCHEMATIC

Operation Modes

KELVION CONTROLS

Overview

KELVION CONTROLS DIGITAL

- ▶ Programmable controller
- ▶ Detailed system information (fan speed, -power, -status)
- ▶ Building Management System (BMS) integration via Modbus RTU or TCP
- Night setback & Scheduler for fan reversal to clean coils
- Emergency mode with capped fan speed override
- ▶ Logging
- Dual alarm relays
- ▶ Controller bypass
- Multiple languages and unit settings
- ▶ 3 levels of PIN code protection for settings
- ► Optional interfaces BACnet MSTP, IP, Profibus over RS-485 or optical, Profinet

AC, EC & Adiabatic digital controls for Dry Cooler, Condenser & Gas Cooler

KELVION CONTROLS ANALOG

- ▶ Parametric fan speed controller for temperature or pressure
- ► EC fan control with analogue control signal
- ► AC fan step control

AC & EC analog controls for Dry Cooler & Condenser

OEM SOLUTIONS

Overview

Slide 47

Gas velocity [m / s]

APPLICATION LIMITS

max. operation temperature: 150 °C

max. operation pressure: 90 bar

REGULAR FIN DESIGN HIGH EFFICIENT KELVION FIN DESIGN FLOW FIELDS BETWEEN FINS (CFD) FLOW FIELDS BETWEEN FINS (CFD) FLOW FIELDS BETWEEN FINS (CFD) FLOW FIELDS BETWEEN FINS (CFD)

KEY BENEFITS AT A GLANCE

- ► Advanced and reliable thermal selection capabilities
- ► Unique and patented highperformance find design
- Excellent customer service and support
- ► Fast delivery even for 100% custom designed units
- ► Long life cycle / durability

KELVION FINS

Increased heat transfer at the same level of pressure drop

BETTER BY DESIGN

- ► State of the art R&D labs
- ▶ Using computational fluid dynamics (CFD),
- ► Innovative, high performance design
- ► Aerodynamic gas flow between the fins
- ► Considerably increased heat transfer
- Pressure drop remains at a comparable level.
- ▶ Considerably higher performance

CERTIFICATES

- ▶ ISO 9001
- ▶ PED (2014/68/UE)
- ► PZH (hygienic certificate HK/B/0288/02/2015)
- ► EAЭC N RU Д-PL.БЛ08.B.03286

APPLICABLE TUBE SIDE MEDIA

- ▶ Water
- ► Water-glycol
- ► Thermal oil

APPLICABLE TUBE SIDE REFRIGERANTS

- ▶ R744
- ► R123ze
- ► R13a
- ► R1234yf
- ► R404A
- ▶ R290
- ▶ R32
- ► R407C ► R410A

APPLICABLE FIN SIDE MEDIA

- ► Air
- ► Natural gas exhaust fumes
- Customised composition of N2. CO2. O2. H2 and water steam

BRAZED PLATE HEAT EXCHANGER

BPHE SPECIFICATIONS

KEY BENEFITS AT A GLANCE

- ▶ Highest flexibility
- ► Compact design
- ► Optimal corrugation design
- ► Wide range of applications
- ► Solid construction
- ► Precision-made heat exchanger

Port size up to DN100 (4")

-196 °C

200 °C

-1 bar 140 bar

GASKETED PLATE HEAT EXCHANGERS

PLATE HEAT EXCHANGER PLACEMENT

The positioning of plate heat exchangers within a double loop system can make significant differences

Dry Cooler or Adiabatic Dry Cooler

Cooling Tower

Plate Heat Exchanger

SWITCH LEVEL PLACEMENT

Vey small units to be utilized at the card to minimize charge of coolant

RACK/TANK LEVEL PLACEMENT

Positioning PHE with additional degree of separation to reduce number of units

AISLE / GROUP LEVEL PLACEMENT

Flexible placement to service an entire aisle for easy maintenance and control

HALL LEVEL PLACEMENT

A single PHE unit for the entire hall means fewest number of PHE's but size and scale are more significant

PLATE HEAT EXCHANGER

Dealing with the challenges

SPACE CONSTRAINTS

VARIOUS OPTIONS

A full range of connections, sizes and types combined with various pass designs ensures finding the right design for your criteria

REDUCE DOWNTIME

SAFETY CHAMBER

Absorbs the stress from thermal shock and pressure in the port area and prevents internal leaks and premature failure

DEALING WITH DIELECTRIC FLUIDS

Various media can be used in different gap sizes:

- ➤ Small gaps can only handle clear and lowviscous media. Even small particles would block the gap.
- ▶ **Medium size gaps** are suitable for viscous media or small particles.
- ► Large gaps gently treat highly-viscous media or can handle media containing particles.

SERVICE OFFERINGS

EARLY LIFE

- Products are delivered safely and fully validated
- Experienced Field Service technicians are at your disposal to investigate and.correct any malfunctions during installation and after the equipment is fully commissioned

REPAIRS, OVERHAULS & MAINTENANCE

- ➤ Trained engineers respond quickly in case of an emergency
- Review and reparation of your components
- Overhaul work in our service centers or in situ with supervision of our qualified staff
- Regular inspections and maintenance

SPARE PARTS & SPARE PART SOLUTIONS

- ▶ Use of highest quality spare parts, designed to match the excellence of the originals
- ➤ This ensures that the optimum interaction between components is maintained
- By safeguarding the original design: maximum security of your investment

MONITORING, CONSULTING & TRAINING

- ► Knowledge of the equipment's condition allows a reliable production, improves safety and energy efficiency, increases equipment lifetime and prevents breakdowns
- Offering of consultancy services
- ► Close collaboration with our customers

UPGRADES & REPLACEMENTS

- ► Replacement of components to keep heat exchangers running smoothly and to prevent downtime
- Suitable upgrades for obsolete parts due to age
- Offering of new, stateof-the-art technology

SERVICE PACKAGES

SUPPORT PACKAGE

CORRECTIVE PACKAGE

PREVENTIVE PACKAGE

PERIODIC INSPECTION

Visual inspection of heat exchanger

HELPDESK

- Prioritized telephone/Email assistance during normal working hours
- Service technician callout during working hours

SPARE PARTS

Recommended spare part list with fixed pricing

PERIODIC INSPECTION

- Visual inspection of heat exchanger
- Audits Performance and power measures incl. recommendation for corrective actions

HELPDESK

- ► Telephone/Email assistance during normal working hours
- Service technician callout during working hours
- Unique contact person

SPARE PARTS

- Recommended spare part list with fixed pricing
- Check of recommended spare parts during periodic inspection

TRAINING

► Operator training incl. troubleshooting

PERIODIC INSPECTION

- Visual inspection of heat exchanger
- ► Audits Performance and power measures incl. recommendation for corrective actions
- Preventive analysis Periodic remote collection and interpretation of data; Periodic recommendations on performance improvements

HELPDESK

- ▶ Helpdesk 24/7
- Callout 24/7 with 8 hr response time

SPARE PARTS

- Recommended spare part list with fixed pricing
- Check of recommended spare parts during periodic inspection
- Stocking of critical spare parts

TRAINING

- Operator training incl. troubleshooting
- Maintenance training

CONTACT ME

www.fluiddynamics.com.au

+61 3 8786 4900 - local 1300 585859

sales@fluiddynamics.com.au

www.fluiddynamics.com.au

EXPERTS IN HEAT EXCHANGE SINCE 1920